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bstract

he phase diagram of the Al2O3–Al4C3 system is now based on unit constituents 1/5 Al2O3 and 1/7 Al4C3, and the formation of intermediate
ompounds 1/9 Al4O4C and 1/4 Al2OC below 2100 K is addressed in terms of free energies of mixing, with corresponding partial molar quantities.
ome relations are derived involving extents of solid solubilities and activities, especially at the eutectoid temperature. It is shown that the positive
xcess amount, relative to the stoichiometric mole fraction, of 1/7 Al C in the oxycarbide 1/9 Al O C, highest at that temperature, can be no greater
4 3 4 4

han 3.98 × 10−10, whereas, based on a reasonable assumption, the negative amount should not exceed 6.9319488 × 10−5. Activities a1/7Al4C3 and
1/5Al2O3 calculated at the eutectoid temperature show that both 1/7 Al4C3 and 1/5 Al2O3 present remarkably large positive deviations from Raoultian
ehaviour, as attested by their activity coefficients at infinite dilution.

2007 Published by Elsevier Ltd.
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. Introduction

Mixing quantities are most convenient to describe alloy
roperties and phase equilibria; they are used here to clarify
ome thermodynamic characteristics of aluminium oxycarbides
/9 Al4O4C and 1/4 Al2OC. An ideal situation, where activities
1/5Al2O3 and a1/7Al4C3 would be known at all temperatures and
ompositions throughout the phase diagram, can be arrived at if
ibbs free energies of formation of all phases are known at each

emperature as functions of composition, what occurs extremely
eldom; all partial molar properties of all phases could then be
btained at any temperature and composition. Such a situation
an be approached when Gibbs free energies of formation of
ll phases are accurately known at least at some compositions,
nd simultaneously, solubility extents are large enough to be
ccurately measured; models can then be sought to describe the
ehaviour of the various solutions at any given temperature. In

he present case, typical for most ceramic phase diagrams, solid
olubilities are extremely reduced, the very reason why no indi-
ation of measurement may be found; only limiting conditions
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n activities and solubility extents can then be determined. This
s shown here, more especially at the temperature of the eutec-
oid decomposition of 1/4 Al2OC, i.e. where the solubility extent
f the other intermediate compound is expectedly the largest.

. Rationale

Appropriate thermochemical functions of part 1 of this
tudy are used to determine free energies of mixing for both
ntermediate compounds 1/9 Al4O4C and 1/4 Al2OC at their sto-
chiometric compositions; partial molar quantities can then be
erived from molar quantities by use of the well known common
angent rule.1,2

. Results and discussion

The 1/5 Al2O3–1/7 Al4C3 phase diagram is presented on
ig. 1 with exaggerated solubilities for both end members and
ach of the intermediate oxycarbides; the loci of points A
hrough F are the solubility limits of solid solutions � through

, as temperature varies. The temperatures of invariant reac-

ions are listed in Table 1 according to several references. In
ef. 3, the würtzite-structure Al2OC oxycarbide is considered
stable phase of the Al2O3–Al4C3 binary system, even if the

mailto:lihrmann@limhp.univ-paris13.fr
dx.doi.org/10.1016/j.jeurceramsoc.2006.06.010
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Fig. 1. 1/5 Al2O3–1/7 Al4C3 phase diagram with exaggerated solid solubilities.
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Table 1
Temperatures (◦C) of invariant reactions in the Al2O3–Al4C3 system, and compositio

Eutectic Al4O4C peritectic Al2OC pe

1840 1890 2000
0.135 (0.10) 0.20 (0.15) 0.43 (0

1905 1940 –

1850 1870 1990
0.16 (0.12) 0.235 (0.180) 0.32 (0

1850 1890 1990
0.150 (0.113) 0.180 (0.135) 0.41 (0

Table 2
Gibbs free energies (J mol−1) of formation of unit constituents

298 K 933 K

1/5 Al2O3 −316,492.986264 −276,74
1/9 Al4O4C −243,269.7845 −212,50
1/4 Al2OC Unstable Unstable
1/7 Al4C3 −29,137.07375 −24,217

T1 = 1983.0531050

1/5 Al2O3 −207,862.332118
1/9 Al4O4C −157,580.8843
1/4 Al2OC −92,647.826588
1/7 Al4C3 −9,162.466671
Ceramic Society 28 (2008) 643–647

uthors acknowledge that the surrounding nitrogen may partly
ontribute to its stability; in contrast, in ref.4, the formation of
his compound is entirely attributed to extrinsic agents and is
hus not integrated to the Al2O3–Al4C3 system, in contradic-
ion with high temperature isothermal experiments5,6 performed
ith commercial powders of Al2O3 and Al4C3 in the absence
f nitrogen, and involving the formation of Al2OC, by solid
tate and/or liquid state reactions, above 1983 K. The same result
an also be achieved at lower temperatures in the presence of
tabilizing agents, either intentionally added as, for example,
ürtzite AlN powder,8 or already present in naturally occurring
inerals.9

From the thermochemical functions of part 1, the Gibbs
ree energies of formation of unit constituents are readily
btained in the temperature intervals (K) 298–933, 933–1500
nd 1500–2100. Table 2 illustrates that in the entire range
000–2100 K, the most stable of them is 1/5 Al2O3, followed by
/9 Al4O4C and 1/7 Al4C3; in its domain of stability, 1/4 Al2OC
anks between 1/9 Al4O4C and 1/7 Al4C3. The uncertainties on
ome values express continuity requirements between adjacent
emperature intervals, otherwise strictly verified.

Table 3 contains the free energies of mixing for both oxy-
arbides as functions of temperature, with necessary continuity
equirements, as well as the molar Gibbs free energy of the
utectoid decomposition of 1/4 Al2OC; the calculated invariant
emperature is T′ = 1983.05310490 K. It is attested that except
or the case of retrograde solubility,10 out-ruled here, the maxi-

um solubilities occur at invariant temperatures. In the interval

000–2100 K of interest to us, this occurs for � compound at
emperature T′; points D and E then become a single point, since
-solubility is nil at that temperature.

ns of equilibrium liquid phase, in mole fraction 1/7 Al4C3 (resp. Al4C3)

ritectic Al2OC eutectoid Reference

– 3
.35) –

– 4

1710 7
.28)

1710 Present
.33)

1500 K

5.297878 −239,298.421614 ± 3.02 × 10−4

8.563091 −182,658.532448 ± 1.39 × 10−4

Unstable
.89451435 ± 5 × 10−8 −16,073.1370984

K 2100 K

−200,311.591776
−151,561.340238

2 −89,043.875595
71 −7,517.76936886
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Table 3
Free energies of reactions (i) through (iii) as functions of temperature, in S.I. units

Reaction Temperature �rG◦

7/27 (1/7 Al4C3) + 20/27 (1/5 Al2O3)
= 1/9 Al4O4C (i)

1000 ≤ T < 1500 �G
(i)
m = −1 233.3332963 + 17/27 × 10−6T + 1/27 × 10−6T ln T − 3.1/9 × 10−12 T3

+ 1/27 × 10−3/T
1500 < T ≤2100 �G

(i)
m = −1 233.33325926 + 16/27 × 10−6T − 1/27 × 10−13T3 + 2/27 × 10−2/T

T = 1500 K �G
(i)
m = −1 233.33274521 ± 3.6283 × 10−4

7/12 (1/7 Al4C3) + 5/12 (1/5 Al2O3)
= 1/4 Al2OC (ii)

T′ ≤ T ≤ 2100 �G
(ii)
m = −3 512.49998333 + 43.5592003333T − 5.55T ln T − 1/12 × 10−13T3 + 1/6 × 10−3/T

1 ′ (iii) 2 818
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/4 Al2OC = 9/16 (1/9 Al4O4C)
+ 7/16 (1/7 Al4C3) (iii)

T ≤ T ≤ 2100 �rG =

Fig. 2, representing integral molar free energies of mixing
f solid solutions �, �, �, � as functions of composition at any
iven temperature between T′ and 2100 K, illustrates the com-
on tangent rule for the three two-phase equilibrium systems

ccurring at such a temperature; this graphical construction is
xpressed into equations in the Appendix A.

For the (� + �) equilibrium system, defined by Eq. (1a)
hrough (6a), X1 = ln a1/7Al4C3 and X2 = ln a1/5Al2O3 , as given
y Eqs. (7a) and (8a), are functions of the solid solubility range
C. At temperature T′, in order to have X1 < 0, it is requested that
C verify the condition

C < 3.98 × 10−10 (1)

It then appears from Table 4, which illustrates the dependence
f X1, X2 and corresponding activities, on δC, that in this sys-
em at this temperature, the activities a1 = a1/7Al4C3 and a2 =

1/5Al2O3 , are such that, using11 R = 8.314471 J mol−1 K−1,

.99999999999 ≥ a1/7Al4C3 ≥ 0.99999999997 (2)

.90394912039 ≥ a1/5Al2O3 ≥ 0.90394912036 (3)

e
δ

e
a

ig. 2. Free energies of mixing of solutions �, �, � and � at the vicinity of x1/7 Al4C3

� + �) and (� + �) equilibrium systems between T′ and 2100 K.
.750025 − 43.5592 × 10−3T + 5.55T ln T + 1/16 × 10−13T3 + 1/4 × 10−3/T

Furthermore, since at temperature T′ the tangents S2 and S3
n Fig. 2A are rigorously equal, it follows that in the (� + � + �)
quilibrium system, X1 = ln(1 − δF) ∼= −δF, whence a condition
n δF at this temperature:

× 10−14(≡ 0) < δF < 2.6 × 10−11 (4)

If δF is nearly constant between the invariant plateaux
f temperatures 1983 and 2263 K, the following condition
pplies on X2 and δE in this temperature interval in addition to
q. (9a):

5

12
− δE

2

)
X2 <

�G
(ii)
m

RT
+ 7

12
× 1.08 × 10−10 (5)

More importantly, Eq. (10a) through (14a) describe the
� + �) equilibrium at a given temperature T. Solutions at
he eutectoid temperature are listed in Table 5 for differ-

nt values of δA; since no limiting condition exists on
A or δB it is deliberately assumed that δA should not
xceed 10−5. From Tables 4 and 5, activity coefficients
t infinite dilution may be calculated, reaching γ∞

1/7Al4C3
>

= {0;7/27;7/12;1}; common tangent rule and vertical intercepts for the (� + �),
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Table 4
X1, X2 and activities as functions of solubility extent δC (mole fraction) at temperature T′

δC X1 a1 = a1/7 Al4C3 X2 a2 = a1/5 Al2O3

3.97 × 10−10 −5 × 10−14 ( 0) 0.99999999999 −0.10098220296 0.90394912036
2.00 × 10−10 −1.3 × 10−12 0.99999999998 −0.10098220294 0.90394912037
→ 0 → −2.6 × 10−12 → 0.99999999997 → −0.10098220292 → 0.90394912039

Table 5
X1, X2 and activities as functions of solubility extent δA (mole fraction) at temperature T′

δA δB X1 a1 = a1/7 Al4C3 X2 a2 = a1/5 Al2O3

10−5 6.9319488 × 10−5 −0.28853057985 0.74936388935 −1.000005 × 10−5 0.99999
10−8 6.9319 × 10−8 −0.28852058981 0.74937137557 −1.0000 × 10−8 0.99999999
1
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R

0−10 6.90 × 10−10 −0.28852057991
0 → 0 → −0.28852057981

4936 and 35000814941.1 < γ∞
1/5Al2O3

< 166119628290 ×
02 and therefore showing important (1/7 Al4C3) and
xtremely large (1/5 Al2O3) positive deviations from Raoultian
ehaviour.

. Conclusion

It is shown that, in the temperature interval 1000–2100 K,
he positive excess amount of 1/7 Al4C3 in the oxycarbide
/9 Al4O4C, relative to the stoichiometric molar fraction value,
an be no greater than 3.98 × 10−10, value determined at the
utectoid temperature. No such condition exists for the neg-
tive excess amount; however if we reasonably assume that
he solubility of 1/7 Al4C3 in 1/5 Al2O3 should not exceed
0−5, we have shown that this amount should be smaller than
.9319488 × 10−5. In terms of activities, both 1/7 Al4C3 and
/5 Al2O3 present remarkably large positive deviations from
aoultian behaviour, as attested by their activity coefficients
t infinite dilutions. Other limiting conditions on solubilities or
ctivities are established.
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ppendix A

Let us briefly remind that it follows from the phase rule that
he chemical potential, μi, of component i be equal in all phases
f an equilibrium system; the same becomes true for the activ-
ty ai, and for the partial molar quantity �Gi = RT ln ai, of
his component, when its chemical potential in all phases of the
quilibrium system is referred to a common reference state (in
he present case the pure solid state under unit pressure at the
emperature of interest), whence the common tangents shown
n Fig. 2A.

End-solutions α and δ obey Raoult’s and Henry’s laws, so
hat �Gm writes

�Gm = RT [×ln(γ∞x) + (1 − x) ln(1 − x)],

with tangent
d�Gm

dx
(< 0) = RT ln

γ∞x

1 − x
;

is the mole fraction of the solute and γ∞, its activity coefficient,
ndependent of composition; the product (γ∞x) represents the
ctivity of the solute whereas (1 − x) is both the mole fraction
nd the activity of the solvent. For intermediate compounds �
nd �,�Gm are unknown functions of composition; it is assumed
hat both compounds extend on each side of the stoichiometric
alues.

As shown on Fig. 2A, equilibrium between � and � requires
n inflexion point at D and leads to the following equations,
ith unknowns X1 = ln a1/7Al4C3 , X2 = ln a1/5Al2O3 , δC, ΔC,

D, ΔD (all four positive):

T [(7/27 + δC) X1 + (20/27 − δC)X2] = �G(i)
m + ΔC/2

(1a)

T [(7/12 − δD)X1 + (5/12 + δD)X2] = �G(ii)
m − ΔD/2

(2a)
ΔC

δC
= ΔD

δD
(3a)



pean

c
m
R

h
p

v
(

(

R

X

X

2
l

R

r

R

X

R

i
−
c

Δ

l
(
w
t
p
a
i

R

Sciences, Ekaterinburg, 2001.
J.-M. Lihrmann / Journal of the Euro

ΔC

δC
= −�G

(i)
m + �G

(ii)
m + (ΔC − ΔD)/2

35/108 − δD
(4a)

ΔC

δC
= −�G

(i)
m + �G

(ii)
m + (ΔC + ΔD)/2

35/108
(5a)

ΔC

δC
= −�G

(i)
m + �G

(ii)
m − (ΔC − ΔD)/2

35/108 − δC
(6a)

[It has to be realized that if a1/7Al4C3 and a1/5Al2O3 are indeed
onstant over the entire [CD] segment, the intercepts of the com-
on tangent with vertical axes being respectively �G1/5Al2O3 =
T ln a1/5Al2O3 and �G1/7Al4C3 = RT ln a1/7Al4C3 , they are
owever different from their values at the stoichiometric com-
ositions, x1/7Al4C3 = 7/27 and x1/7Al4C3 = 7/12].

At the particular temperature T′, corresponding to the highest
alue of δC, nil solubility of � compound requests δD = 0. Thus
4a) becomes

ΔC

δC
= −�G

(i)
m + �G

(ii)
m + (ΔC − ΔD)/2

35/108
(4′a)

4′a) and (5a) yield ΔD = 0, whence

T ′ [7/12 X1 + 5/12 X2] = �G(ii)
m (2′a)

Eqs. (5a), (6a) and (1a) straightforwardly lead to

RT ′[(7/27 + δC)X1 + (20/27 − δC)X2]

= �G
(i)
m + (108/35)δC(�G

(ii)
m /2 − �G

(i)
m )

(1 − 54/35)δC
(1′a)

Solutions of (1′a), (2′a) system at temperature T′ are

1(δC) =

(5/12 �G
(i)
m − 20/27 �G

(ii)
m )

+ δC(39/14 �G
(ii)
m − 9/7 �G

(i)
m )

RT ′(1 − 54/35 δC)(−35/108 + δC)
(7a)

2(δC) =

(7/27 �G
(ii)
m − 7/12 �G

(i)
m )

+ δC(9/5 �G
(i)
m − 3/10 �G

(ii)
m )

RT ′(1 − 54/35 δC)(−35/108 + δC)
(8a)

Similarly, at any given temperature in the interval [T′,
100 K], activities a1/7Al4C3 and a1/5Al2O3 in the (� + �) equi-
ibrium system verify the following equation:

T [(7/12 + δE/2) X1 + (5/12 − δE/2) X2] = �G(ii)
m (9a)
The equations describing the (� + �) system at some equilib-
ium temperature are as follows:

T (δA X1 + (1 − δA) X2) = �Gm,� (10a)

1
1

Ceramic Society 28 (2008) 643–647 647

2 = ln(1 − δA) (11a)

T [(7/27 − δB/2)X1 + (20/27 + δB/2)X2] = �G(i)
m (12a)

ΔB

δB
= RT (X2 − X1) (13a)

ΔB

δB
= �Gm,� − �G

(i)
m

7/27 − (δA + δB/2)
(14a)

They can be easily solved as a function of δA, start-
ng for example with the approximate relation ΔB/δB ∼=
�G

(i)
m /(7/27) and using (13a) to get (X1)approx; (12a) and (13a)

ombining into

B = 2[�G(i)
m − RT (7/27 X1 + 20/27 X2)] (15a)

ead to (ΔB)approx, whence (δB)approx from (13a) and
�Gm,�)approx from (10a). Extremely few iterations initiated
ith the improved value of ΔB/δB (14a) bring the final solu-

ion, for any given starting value of δA. In contrast with the three
hase equilibrium, the condition for the (X1, X2) solution to be
cceptable, namely δA/(7/27 − δB/2) < (−ΔGm,�/ − ΔG

(i)
m ),

s much less severe and is always verified.
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